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Traffic sign detection and recognition in the wild is a challenging task. Existing techniques are often inca-
pable of detecting small or occluded traffic signs because of the scale variation and context loss, which
causes semantic gaps between multiple scales. We propose a new traffic sign detection network
(TSingNet), which learns scale-aware and context-rich features to effectively detect and recognize small
and occluded traffic signs in the wild. Specifically, TSingNet first constructs an attention-driven bilateral
feature pyramid network, which draws on both bottom-up and top-down subnets to dually circulate
low-, mid-, and high-level foreground semantics in scale self-attention learning. This is to learn scale-
aware foreground features and thus narrow down the semantic gaps between multiple scales. An adap-
tive receptive field fusion block with variable dilation rates is then introduced to exploit context-rich rep-
resentation and suppress the influence of occlusion at each scale. TSingNet is end-to-end trainable by
joint minimization of the scale-aware loss and multi-branch fusion losses, this adds a few parameters
but significantly improves the detection performance. In extensive experiments with three challenging
traffic sign datasets (TT100K, STSD and DFG), TSingNet outperformed state-of-the-art methods for traffic
sign detection and recognition in the wild.

� 2021 Published by Elsevier B.V.
1. Introduction

Automatic traffic sign detection and recognition (ATDR) is an
important submodule of driver assistance systems and autono-
mous vehicles. Although promising results have been achieved
with ATDR [1–3], the effective detection and recognition of traffic
signs in the wild remains an open problem. This is mainly because
of the scale variation and occlusion of signs, as shown in Fig. 1.
Existing methods for ATDR in the wild can be divided into two cat-
egories: handcrafted feature-based methods and deep learning-
based methods. Handcrafted features such as the histogram of ori-
ented gradients (HOG) [4], scale-invariant feature transform (SIFT)
[5], color and shape prior [6], are not robust enough to distinguish
between real and fake signs. This is mainly because many other
objects in the wild look similar to traffic signs and the subtle differ-
ence are not represented by aforementioned features.

Deep learning-based methods for ATDR can be divided into two
broad categories according to the network architecture [7]: two-
stage networks such as the region-based convolutional neural net-
work (R-CNN) [8], Fast-RCNN [9], and Faster R-CNN [10]; and one-
stage networks such as Single-Shot Multibox Detector (SSD) [11],
You Only Look Once (YOLO) [12], AugFPN [13] and RetinaNet
[14]. Because of the limited computational capacity in real-world
applications, most studies have focused on one-stage networks
for ATDR, but the detection performance deteriorates for signs with
large scale variations and occlusion in the wild [1,15]. This can be
attributed to two main reasons. First, traffic signs in the wild are
often smaller than other objects (e.g., cars and pedestrians) and
occupy less than 5% of each image. These small traffic signs usually
lack a detailed appearance that can distinguish them from similar
backgrounds or objects. Second, unlike a laboratory environment,
various occlusions can occur in the wild because of the perspective
change of automobiles [1]. As shown in Fig. 1(a), RetinaNet is
unable to detect occluded and small signs in the wild.
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Fig. 1. Detection results for some challenging environments in the wild with small signs and occlusion: by (a) RetinaNet; (b) TSingNet. The zoomed result is shown in the top-
left corner of each image. Compared with RetinaNet, TSingNet accurately detects and recognizes all traffic sign instances owing to its scale-aware and context-rich feature
learning.

Y. Liu, J. Peng, Jing-Hao Xue et al. Neurocomputing 447 (2021) 10–22
Recently, multi-scale pre-trained network-based methods that
greatly improve the ATDR performance in the wild have been
developed [16–19]. DMS-Net [18] is a scale-aware CNN that
exploits multiple layer features by using a top-down feature pyra-
mid network (FPN) and an Inception module for traffic sign detec-
tion in the wild. Vertical spatial sequence attention (VSSA)-NET
[19] adopts an attention mechanism to learn more informative
context of traffic signs. Although these methods have achieved
good performance, they only inject high-level semantic informa-
tion into previous layers. The foreground semantics of small traffic
signs easily disappear at high levels of the FPN. Because scale vari-
ation and occlusion depend not only on features themselves but
also on contextual information, dilated CNNs have been proposed
to capture more contextual content [20]. However, these tend to
lose small objects when a large dilation rate is used [21]. These
problems degrade the ATDR performance in the wild. Hence, it is
necessary to narrow the foreground semantic gap between
multi-scale feature pyramid maps and expand the ranges of recep-
tive fields through adaptive dilation rates to improve the ATDR
performance in the wild.

We propose a new traffic sign detection network called TSing-
Net that leverages a scale-aware and context-rich feature repre-
sentation of signs to effectively detect and recognize multi-scale
and occluded traffic signs. The major contributions of our paper
are as follows:

1. We propose TSingNet, which is a simple network for learning
scale-aware and context-rich features for ATDR in the wild. Its
performance was compared with that of state-of-the-art meth-
ods for three challenging datasets (TT100K, STSD and DFG).
2. We propose an attention-driven bilateral FPN (AbFPN) for
learning scale-aware foreground features that incorporates
both a bottom-up subnet and scale-aware top-down subnet to
narrow the semantic gaps between multiple scales.
3. We introduce an adaptive receptive field fusion (ARFF) block
with variable dilation rates to exploit context-rich representa-
tion for occlusion compensation at various scales.
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4. We propose a scale-aware loss (SAL) function for dealing with
scale variation and learning the scale correlation of traffic signs
so that TSingNet can learn scale-aware foreground features
from a complex background.

The rest of this paper is organized as follows: Section 2 intro-
duces related work. Section 3 presents TSingNet for ATDR in the
wild. Section 4 discusses the experiments and results. Section 5
concludes this paper.
2. Related work

Numerous works have proposed methods for traffic sign detec-
tion; we only review those relevant to our work and highlight their
differences compared with TSingNet.
2.1. Methods based on deep learning

In recent years, deep neural networks have gradually attracted
attention in research on ATDR. Yang et al. proposed a region pro-
posal algorithm based on the color probability model and color
HOG, and they used a support vector machine and CNN to conduct
regression and classification of the aforementioned candidate
boxes [22]. Shao et al. proposed a regional suggestion algorithm
to simplify the Gabor wavelet, and improve Faster R-CNN for traffic
sign detection [23,24]. Zuo et al. introduced Faster R-CNN to traffic
sign detection and obtained a mean average precision (AP) of
34.49% for a dataset that they collected [25]. Zhang et al. proposed
an improved one-stage traffic sign detector based on YOLO-v2 [17],
where they modified the number of convolutional layers in the
classic YOLO-v2 network to make it suitable for the China Traffic
Sign Dataset. Yang et al. introduced an attention network into
the framework of Faster R-CNN to help with detecting traffic signs
in challenging and complex scenes [15]. Shan et al. improved the
SSD model and used it to detect three types of traffic signs in the
China Traffic Sign Detection Dataset [16].
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Considering the complexity of real-time ATDR, some research-
ers have designed dedicated and lightweight CNN models. Zhu
et al. used two full convolutional networks for the task: one to
obtain regions of interest and the other to locate and classify traffic
signs. Compared with the state of the art, they achieved the best
performance with a detection accuracy of 88% and recall of 91%
for the TT100K dataset [2]. Yuan et al. proposed the VSSANET net-
work, which uses MobileNet to extract multi-scale features and
introduces a VSSA module to gain more context information for
better detection performance [19]. Although these methods have
achieved good performance, they still suffer from semantic gaps
and occlusion when features at different levels are fused. In con-
trast, TSingNet uses an AbFPN to narrow the semantic gaps and
capture more valid foreground information at multiple scales
before feature fusion.
2.2. Multi-scale feature learning

Many methods have been proposed for detecting scale-
invariant objects, and they can be divided into two broad cate-
gories: those based on a generative adversarial network (GAN)
and thosed based on FPN-based methods. GAN-based methods
are preferred for learning super-resolved features or compensating
for loss features of small objects [26–28]. Typically, GAN-based
methods require a large training dataset and high-performance
computational resources. However, collecting and labeling a large
number of traffic-sign data in the wild is very expensive [1].

FPN-based methods are usually used to learn multi-scale fea-
tures in a pyramid framework. MS-CNN [29] exploits multiple
layer features with different resolutions for multi-scale object
detection. AugFPN [13] uses augmented FPN layers to enhance
the feature map resolution for learning more informative represen-
tation at different scales for small object detection. Scale-aware
CNN [18] adopts a fully convolutional neural network with dual
multi-scale architecture for accurate recognition of traffic signs of
different sizes in images. FPN-based methods that focus only on
high-level semantics can easily generate the semantic gaps
between multiple scales. To address this problem, PANet [30] uses
bottom-up path augmentation to shorten the information path and
enhance the feature pyramid with accurate localization signals at
low levels. However, his method only boosts the information flow
of low levels for feature localization in the proposal-based instance
segmentation framework and does not enhance small objects in
the foreground. Hence, TSingNet includes an AbFPN module with
two bilateral FPN subnets and two scale self-attention (SSA) blocks
that focus on dually circulating low-, mid-, and high-level seman-
tics to narrow the semantic gaps between multiple scales and
strengthen scale-aware foreground features.
2.3. Context exploitation

Several methods have proved the importance of context to
object detection [31,32,21,20]. The spatial recurrent neural net-
work was proposed to encode different directional context infor-
mation, which improved detection performance on small-size
targets [31]. Spatial memory iterations were used to encoder
object-to-object context [32]. A novel TridentNet was proposed
to generate scale-specific feature maps with uniform representa-
tional power by using a variant dilated CNN [21]. In contrast,
TSingNet uses ARFF to generate diverse spatial context information
in the foreground regions and reduce information loss of small and
occluded signs at higher pyramid levels.
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3. Proposed method

The proposed TSingNet is a one-stage detection network that
leverages scale-aware and context-rich feature learning for ATDR
in the wild. Fig. 2 illustrates the architecture of TSingNet, which
incorporates AbFPN and ARFF blocks into a one-stage detection
framework. First, the AbFPN comprises a bottom-up subnet and
scale-aware top-down subnet with two SSA learning blocks to nar-
row the semantic gaps between multiple scales and strengthen
scale-aware foreground features. To suppress the influence of
occlusion and scale variation, the ARFF adaptively exploits
context-rich feature representation with trident anisotropy dila-
tion convolution layers. Finally, multi-branch classification and
regression are performed on the basis of the scale-aware and
context-rich representation. TSingNet is globally optimized via
joint scale-aware and multi-branch fusion losses and is trainable
end-to-end.

3.1. AbFPN for scale-aware foreground feature learning

A traditional FPN makes use of the in-network feature hierarchy
to produce top-down feature pyramid maps [33]. However, large
semantic gaps exist between these maps. To narrow the semantic
gaps, we propose the AbFPN. This adopts both a bottom-up subnet
and scale-aware top-down subnet to circulate low-, mid-, and
high-level foreground semantics for SSA learning, as shown in
Fig. 3.

3.1.1. Bottom-up subnet
To account for a limited amount of training data, we first build a

feature pyramid based on the multi-scale features C3;C4;C5f g from
the pre-trained ResNet-50 backbone.

Because small signs have insufficient semantic information, the
bottom-up subnet appends three scale fusion layers to the feature
pyramid C3;C4;C5f g to generate the more informative fusion fea-
tures F4; F5f g. Each scale fusion layer includes a 1� 1 convolution
operation, a 3 � 3 convolution operation with a step size of 2 and
an element-wise addition operation.

3.1.2. Scale-aware top-down subnet
To compensate for the semantic gaps between multiple scales

in the bottom-up subnet, the scale-aware top-down subnet gener-
ates the scale-aware foreground feature pyramid maps
Pi 2 P3; P4; P5f g from the above-mentioned fusion representation
through SSA learning, as shown in Fig. 3(b). The scale-aware top-
down subnet consists of three top-down feature fusion layers
and two SSA blocks. The additional SSA blocks can learn the scale
correlation of traffic signs to reduce the aliasing effect of the down-
sampling process and enhance the foreground semantics.

As shown in Fig. 4, the SSA blocks first select the informative

scales for capturing the valid foreground features Pf
i from a com-

plex background. Then they fuse the upsampled Pf
i with the back-

bone scene features Ci�1 of the same size to obtain the final scale-
aware foreground feature pyramid maps Pi�1 as follows:

Pi�1 ¼ H Pf
i ;Ci�1

h i� �
; i ¼ 4;5f g; ð1Þ

where H �ð Þ is the concatenation operation and i is the level of the

pyramid. The Pf
i can be re-weighted and combined according to

traffic sign foreground discrimination, which helps strengthen the
semantic information of small traffic signs and eliminates the influ-
ence of scale variation and complex background.

Next, we discuss the learning procedure of valid foreground fea-

tures Pf
i in detail. As shown in Fig. 4, the scale-aware foreground

maps can be calculated with a small four-layer SSA block between



Fig. 2. Architecture of the proposed TSingNet. There are three components: the attention-driven bilateral feature pyramid network (AbFPN), adaptive receptive field fusion
(ARFF) blocks, and multi-branch classification and regression heads. AbFPN comprises two bilateral FPN subnets to learn scale-aware foreground features in a scale self-
attention (SSA) approach. Then, the ARFF blocks allow the network to exploit more context-rich feature representation at different scales. Finally, multi-branch classification
and regression heads jointly detect and recognize traffic signs from the scale-aware and context-rich features.

Fig. 3. Architectures of the (a) standard FPN and (b) AbFPN. AbFPN constructs bilateral attention pyramid subnets to learn scale-aware foreground features.

Fig. 4. The scale self-attention learning block (SSA).
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two fusion levels of the pyramid. SSA learning enforces a high
weight for a scale-aware foreground feature and low weight for
an occluded or background feature. The SSA block first performs
a squeeze operation via a global average pooling layer (zero param-
eters) to aggregate the features of the pyramid Pi of dimension
j�w� h into a scale descriptor Di of dimension j� 1� 1, similarly
to [34], where j is the number of the channels in each scale.

Then, two fully connected layers are used to approximate the
scale-aware model, with the weighting coefficient vector as
13
cj ¼ c1; . . . ; cj
� � ¼ r Wl

2 � ReLU Wl
1 � Di

� �� �
; ð2Þ

where r denotes the Sigmoid function; Wl
1 2 Rr�1 (r parameters)

and Wl
2 denote the parameter vectors of the two fully-connected

layers, respectively; and the output vector cj measures the fore-
ground impact on scale variation and encodes a non-mutually-
exclusive relationship among scales. This step tends to learn a high
weighting coefficient for a scale-aware foreground region and a low
weighting coefficient for a background one, and then a channel-
wise multiplication R �ð Þ is used to re-weight the features:

Pf
i ¼ R cj; Pi

� �
; i ¼ 4;5f g; ð3Þ

where Pi is the features of the ith level in the pyramid, and its
dimension is j�w� h.

Finally, SSA fuses the upsampled Pf
i with the backbone scene

features Ci�1 of the same dimension, obtaining the final scale-
aware foreground feature pyramid maps Pi�1, as expressed by Eq.
(1).

3.1.3. SAL function
To optimize the scale-aware foreground feature learning and

narrow down the semantic gaps in AbFPN, we propose a novel
SAL function to adaptively guide the network for learning valid
foreground features at different scales. Because of the consistency
of the foreground objects at different levels of the pyramid, the SAL
function enforces the similarity between the learned foreground
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features but at different scales. This enables the AbFPN to maxi-
mize the perception of foreground features at different scales.
Specifically, given the foreground features with different scales in

the AbFPN, P yð Þfi
n o5

i¼3
, we achieve this goal by minimizing the dis-

tance between the scale-aware foreground feature P yð Þfi
n o5

i¼3
and

their average feature vector over the adjacent scales �Pf
i . Consider-

ing the relatively closer information flow learned in the adjacent
scales than the deeper levels, the average feature vector over the
adjacent scales is calculated as follows:

�Pf
i ¼

1
3

Xiþ1

i�1

P yð Þfi i ¼ 4;5f g

1
3

X5
i¼3

P yð Þfi i ¼ 3f g

8>>>>>><
>>>>>>:

ð4Þ

The scale-scale objective function can be expressed as

Ls ¼ 1
3

X5
i¼3

d P yð Þfi ; �Pf
i

� �
: ð5Þ

For computational efficiency, we adopt Euclidean distance, i.e.,
d x; yð Þ ¼ jjx� yjj2. This objective alone will lead to a solution for
learning scale-aware foreground features.

3.2. ARFF blocks for context-rich representation

To suppress the influence of occlusion at various scales, we
replace the convolution layers in the last stage of the backbone
AbFPN with three ARFF blocks to exploit context-rich representa-
tion (see Fig. 2). Different dilation rates are used to adaptively con-
trol the receptive field of the network. Because greater dilation
rates increase difference in the receptive field as needed, these
blocks can make use of the contexture information of the occluded
and multi-scale objects for detection and recognition. As shown in
Fig. 5, each ARFF consists of four parallel convolutional layers and
the following trident dilated convolution layers with different dila-
tion rates, which can compensate the contextual information loss
of the occluded regions and balance the effective receptive field
Fig. 5. Architecture of the ARFF block. It efficiently exploits context-rich feature
maps by using trident layers with various dilation rates.
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between small and large signs. Increasing dilation rates enlarges
the effective receptive field by emphasizing contextual contents
and large objects, while decreasing dilation rates prefers to focus
on small objects. The varying dilation rates mitigate the influence
of both occlusion and scale variation.

Fig. 6 gives different receptive fields of trident dilated convolu-
tion layers in ARFF. Additionally, to ensure the efficiency of this
block, different branches share the same structure (except dilation
rates) and thus make weight sharing straightforward. For example,
if you want to construct the larger dilation rate diþ1, the dilated
convolution with smaller dilation rate di only inserts diþ1 � di zeros
between consecutive filter values, enlarging the receptive filed
without bringing in extra parameters and computations. Suppose
the receptive field of the original convolution is r, then our ARFF
could increase the receptive field of the network by
2� diþ1 � dið Þ � r.

3.3. Multi-branch classification and regression

As shown in Fig. 2, TSingNet adopts multi-branch classification
and box regression heads attached to the scale-aware foreground
feature pyramid maps to predict the positions and categories of
traffic signs at each scale. In contrast with the traditional detection
head structure, the multi-branch heads separate the classification
and regression tasks in hidden feature spaces and different scales.
This is achieved by taking apart the shared two hidden layers. As
shown in Fig. 2, the multi-branch heads detect each traffic-sign
instance at different scales by selecting the best level of semantic
feature.

3.4. Joint multi-loss function for global optimization of TSingNet

For global optimization of TSingNet, we introduce a joint multi-
loss function that consists of the SAL and multi-branch fusion
losses:

LMulti ¼ k1Ls þ k2
X7
i¼3

Li; ð6Þ

where Ls is the scale-aware loss defined in Eq. (5) for learning scale-
aware foreground features from complex background; Li is a branch
loss attached to each classification and regression head for traffic
sign detection and recognition, where i ¼ 3; . . . ;7; k1 and k2 are
the weights used to balance the two types of loss, which are simply
set to 1 in this paper. Li consists of one classification loss and one
detection regression loss, defined as

Li ¼ Lcls;Pi Pi; ĉð Þ þ b1 ĉ>0f gLdec;Pi Pi; bRx;y

� �
; ð7Þ

in which Lcls;Pi is the focal loss for classification as in [14] and Ldec;Pi is
the detection regression losses, on each level of the feature pyra-

mid; ĉ and bRx;y denote the ground-truth classification label and
the regression target bounding box, respectively; b is to trade-off
the classification and detection regression losses, which is set to
1; and the indicator function 1 ĉ>0f g is defined as,

1 ĉ>0f g ¼
1; ĉ > 0;
0; ĉ ¼ 0:

�
ð8Þ

where ĉ ¼ 0 when the IoU between the anchor and the ground truth
is below 0.4. It means that the regression loss is unaffected by neg-
ative samples during training.

4. Experiments and analysis

In this section, we thoroughly evaluate the proposed approach
on three challenging traffic-sign detection datasets, i.e. TT100K



Fig. 6. Trident dilated convolution layers with adaptive receptive fields. From left to right, the dilation rates are 1, 2 and 3, respectively. The dilation rate can be varied to
decrease the influence of occlusion and scale variation. The red squares represent the center pixels in convolution operations, and the green squares represent their receptive
fields.
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[2], STSD [35] and DFG [1]. Sample images and size distributions of
traffic sign instances in the three datasets are displayed in Fig. 7
and Fig. 8. From the samples and size distributions, we can see that
these three datasets are very challenging, containing samples with
large scale variation, occlusion, tiny traffic signs, etc.

4.1. Datasets

TT100K The TT100K dataset consists of 100,000 street view
images with 30,000 traffic sign instances corresponding to 45 cat-
egories [2]. Large variations in signs’ scales, weather conditions
and illuminance are present in these images. Each traffic sign in
this dataset is annotated with a class label, pixel mask, and its
bounding box. The images in this benchmark have the resolution
2048 � 2048 and are similar to the real visual field of drivers. As
shown in Fig. 8(a), about 42% traffic signs in TT100K are small
objects.
Fig. 7. Sample images from the three challenging datasets: (upper) the TT1

15
DFG The DFG traffic-sign dataset is a dataset of signs with large
scale variation. It was produced by DFG Consulting d.o.o. in Slove-
nia, and was randomly collected through car cameras in six cities
and surrounding villages [1]. It contains a total of 6957 images
with 13,239 tightly annotated traffic-sign instances corresponding
to 200 categories. Each image contains annotations of all traffic
signs larger than 25 pixels for any of the 200 categories. From
Fig. 8(b), 19% traffic signs in the DFG are smaller than 32 � 32 pix-
els, and about 20% traffic signs are larger than 250 � 250 pixels.

STSD The Swedish traffic-sign dataset (STSD) contains 20 cate-
gories and 3777 annotated images [35]. In order to evaluate the
performance of the model on small objects, different from [36],
we select a sign that is at least 20 pixels in size. We also evaluate
10 categories of flags and evaluate our approach based on the PAS-
CAL [37] protocol. In the experiment, there are only 1158 images in
the training set and 981 images in the test set. As shown in Fig. 8
(c), the proportion of small targets is as high as 42.5% in STSD.
00K dataset; (middle) the STSD dataset; and (lower) the DFG dataset.



Fig. 8. Size distribution of sign instances from the (a) TT100K, (b) DFG and (c) STSD datasets. area < 322;322 < area < 962and area > 962 pixels denote small (red), medium
(green) and large (blue) scales, respectively. The distribution of object sizes on each dataset is shown at the top of each image. The TT100k and DFG datasets include more
traffic signs with scale variation, while the STSD dataset includes more small traffic signs.
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4.2. Experimental setting

The experiments were conducted on a PC with Intel (R) Core
(TM) i7-6700 CPU at 4.00 GHz and 32 GB memory, and NVIDA
GeForce GTX 1080. The training and validation data sets include
43,663 images from TT100K, 1158 images from STSD and 5254
images of DFG. A 5-fold cross-validation was conducted for param-
eter tuning. For testing, we used other 3,644 images from TT100K,
981 images from STSD, and 1703 images of DFG.

We implemented TSingNet by using the PyTorch deep learning
framework [38]. In the training parameter settings, we basically
keep the same as with the focal loss [14]. The initial learning rate
(0.01) is divided by 10 at 9th epoch and again at the 16th epoch.
For the setting of anchors, referring to YOLOv2 [39], we select 9
anchors at each level of the pyramid, whose widths and heights
are calculated by clustering the dimensions of traffic signs. In order
to evaluate not only the overall performance but also the multi-
scale capacity, the performance of each trained detector is mea-
sured by the COCO Average Precision (AP) with different IoUs
and scales and the Average Recall (AR) with different proposal
numbers and scales [40]. After paper publication, we will release
our source code to Github in future.

4.3. Results on the TT100K dataset

Table 1 shows the results on the TT100K dataset obtained by
Faster R-CNN [10] with the FPN, Cascade R-CNN [42], M2Det
Table 1
Comparison of our TSingNet with state-of-the-art methods on the TT100K dataset. Our app
COCO metrics. The best results are in bold.

Methods Backbone Input size AP AP50

M2Det [41] ResNet50 800 � 800 29.4 65.6
Our TSingNet ResNet50 800 � 800 65.3 89.2
Faster R-CNN[10]+FPN ResNet50 1024 � 1024 59.2 93.1
Cascade R-CNN[42] ResNet50 1024 � 1024 61.3 94.4
RetinaNet[14] ResNet50 1024 � 1024 65.3 91.3
EfficientDet-d4[43] EfficientDet-B4 1024 � 1024 61.3 79.9
Libra R-CNN[44] ResNet50 1024 � 1024 67.3 92.4
YOLOv5[45] – 1024 � 1024 67.2 92.9
ATSS[46] ResNet50 1024 � 1024 66.7 91.8
Our TSingNet ResNet50 1024 � 1024 67.3 93.3
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[41], RetinaNet [14],EfficientDet [43], Libra R-CNN [44], YOLOv5
[45], ATSS [46] and our TSingNet. From Table 1, we can make the
following observations. First, TSingNet achieves a mean AP of
67.3% on all 45 traffic sign classes,which outperforms most of
methods and has the same performance as Libra R-CNN. Secondly,
compared with the RetinaNet and ATSS, our TSingNet respectively
gains 3.5% and 2.1% increases in APs and the best performance in
APL, indicating that our method can detect both small and large
signs accurately. Thirdly, compared with the cascade R-CNN and
faster RCNN, our TSingNet achieves over 10.4% improvement in
AP75, which shows that our method can detect more precise
bounding boxes (with IoU of 0.75) for the traffic sign detection
task. Additionally, the performance gain is relatively low if we con-
sider the AP50. A possible reason is that the AbFPN module of our
method focuses more on the tiny signs and strengthens scale-
aware foreground features of traffic signs from complex back-
ground (see the recall rate ARS on small objects). It can obtain a
more accurate target position than other methods and is significant
for traffic sign recognition in the real-world traffic scenarios.

Moreover, to further evaluate the capacity for scale variation, as
shown in Table 2, we present the average recall (R) and accuracy
(A) of each model at three scales for a comparison with the
state-of-the-arts under IoU = 0.5. Compared with the second-best
Zhang et al.[48], our proposed method achieves over 4.0% improve-
ment in average accuracy.

We obtain the best accuracies of 92.0%, 97.0% and 96.0% on the
small, medium and large scales, respectively. Finally, we visualize
roach achieves impressive performance for both 800� 800 and 1024� 1024inputs on

AP75 APS APM APL AR1 AR10 ARS ARM ARL

19.2 25.9 38.0 15.2 40.0 44.0 33.3 52.0 32.1
78.9 44.8 72.7 79.1 67.1 70.2 51.1 77.1 81.7
68.4 41.2 67.2 76.0 62.9 65.9 48.2 73.3 79.7
71.1 44.5 68.8 79.9 65.2 68.2 50.5 74.9 84.6
78.8 46.8 71.7 78.7 67.6 70.6 54.1 76.5 81.5
73.2 36.9 72.3 71.6 66.7 70.1 47.5 79.8 81.0
81.6 51.2 73.9 77.6 71.1 74.6 62.0 79.5 81.8
82.5 52.9 71.8 79.6 71.8 75.9 66.4 78.7 85.9
79.6 48.2 74.3 77.5 71.3 75.0 61.6 80.7 83.2
81.5 50.3 73.4 80.0 71.9 72.2 66.4 77.8 82.8



Table 2
Comparison of detection recall and accuracy in three different scales (Small, Medium and Large) with the state-of-the-art methods on TT100K. (R): Recall (%); (A): Accuracy (%).
The best results are in bold.

Small Medium Large All

Zhu et al. [2](R) 87.0 94.0 88.0 –
Li et al. [47](R) 89.0 96.0 89.0 93.0
Zhang et al. [48](R) 85.0 96.0 94.0 92.0
Our TSingNet (R) 88.1 95.4 91.0 93.0
Zhu et al. [2](A) 82.0 91.0 91.0 –
Li et al. [47](A) 84.0 91.0 91.0 88.0
Zhang et al. [48](A) 86.0 95.0 92.0 91.0
Our TSingNet (A) 92.0 97.0 96.0 95.0

Fig. 9. Some detection comparison between the RetinaNet (the top row) and the proposed TSingNet (the bottom row) on the TT100K dataset, with the zoomed results
displayed at the top-right or bottom-left corners. Our TSingNet detects all traffic signs in the complex scenes.
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the detection results, as shown in Fig. 9, and observe that our
method can successfully detect some small objects, which are
failed in the baseline detector.

4.4. Results on the STSD dataset

To further evaluate the capacity of our proposed TSingNet for
small sign detection, we conduct the experiments on the STSD
dataset. The results of our method and other state-of-the-art meth-
ods on STSD are listed in Table 3. Our TSingNet achieves an average
precision of 91.5% without any data augmentation. It is demon-
Table 3
Comparison of our TSingNet with state-of-the-art methods on each category in the STSD

Sign name Faster R-CNN [10]+FPN RetinaNet [14]

Prec. (%) Rec. (%) Prec. (%) R

PED.CROS 93.6 87.2 91.9
PASS RIGHT SIDE 86.7 89.3 93.7
NO STOP/STAN 85.2 61.1 85.2

50 SIGN 80.5 70.0 94.0
Priority road 91.2 91.6 89.7
Give way 89.7 91.1 96.3
70 Sign 94.9 78.4 98.2
80 Sign 63.0 56.2 86.9
100 Sign 57.3 71.4 79.2

No parking 86.7 89.3 91.5
Average 82.9 78.3 90.7
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strated that TSingNet can achieve the better performance with a
small amount of training data. Compared with the methods in
[10], RetinaNet [14], andYOLOv5 [45], both precision and recall
of the proposed TSingNet gain a great improvement (the largest
10.9% increase in average precision (Prec.) and 7.5% increase in
Recall (Rec.)). We believe this is because our method achieves
scale-aware foreground features and exploits the context informa-
tion of tiny traffic signs from the complex background.

Furthermore, for more stringent evaluation, Table 4 lists the
performance of our TSingNet against the Faster R-CNN [10], Faster
R-CNN [10] with the FPN, Cascade R-CNN [42], RetinaNet [14],Libra
dataset. The best results are in bold.

YOLOv5 [45] Our TSingNet

ec. (%) Prec. (%) Rec. (%) Prec. (%) Rec. (%)

87.6 81.2 96.3 92.5 87.0
88.2 78.6 90.7 94.3 91.5
60.5 82.3 39.3 85.7 63.2
83.2 89.4 44.5 90.6 81.1
94.6 77.3 95.2 90.7 91.8
91.8 90.8 93.4 96.3 91.8
94.1 82.4 92.4 100.0 94.1
58.2 65.1 45.1 88.1 57.1
63.6 65.4 51.5 81.8 68.2
88.9 83.3 90.8 95.0 88.1
81.1 79.6 73.9 91.5 81.4



Table 4
The comparison of average accuracy (AP%) in different scales on the STSD dataset with COCO metrics.

Methods APS APM APL AP50 AP75 AP

Faster R-CNN [10] 35.5 68.4 77.6 81.4 64.0 54.4
Faster R-CNN [10]+FPN 41.7 68.9 76.2 82.5 68.8 58
Cascade R-CNN [42] 43.2 71.3 78.9 84.2 72.9 59.8
RetinaNet [14] 40.4 68.7 73.9 81.8 71.4 58.6
Libra R-CNN [44] 38.5 67.2 76.0 80.4 65.9 54.8
ATSS [46] 37.7 69.0 75.5 79.7 71.8 57.9
YOLOv5 [45] 39.2 66.5 79.5 82.2 68.3 57.5
Our TSingNet 43.9 73.0 76.4 83.3 76.6 62.4
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R-CNN [44], ATSS [46] and YOLOv5 [45] using the COCO metrics on
the STSD dataset.

We observe that our method achieves a mean AP of 62.4% on 10
categories, which outperforms other state-of-the-art methods. In
addition, our TsingNet also achieves best results of 43.9% and
73.0% in the small and medium subsets (see APS and APM). Overall,
we can get better results under more stringent IoU = 0.75 require-
ments (over 5.2% improvement from the baseline). It means that
our TSingNet can detect more precise bounding boxes for the traf-
fic sign instances. For ATDR in the wild, more precise bounding
boxes can facilitate more accurate traffic sign recognition. Some
detection examples by TSingNet are depicted in Fig. 10.
4.5. Results on the DFG dataset

To further validate the robustness of TSingNet, we compare it
with state-of-the-art methods (Cascade R-CNN [42], RetinaNet
[14],Libra R-CNN [44], ATSS [46], and YOLOv5 [45]) on more chal-
lenging DFG dataset. It includes 200 traffic sign categories with
more scale variation. Table 5 gives the AP’s on standard COCO met-
rics with different IoUs and scales. As shown in Table 5, our TSing-
Net achieves an AP of 81.4% on 200 traffic-sign categories, which
are much better than those of any other methods.Most notably,
the improvement on AP75, about 5.3% and 5.7% higher than the
Libra R-CNN and ATSS, is more significant for traffic sign recogni-
tion. We believe that this can be mainly attributed to the bilateral
multi-scale design in TSingNet. We can see that the performance
gain on AP50 is a little lower than on AP75. A reason for this is that
more accurate sign positions can help recognize traffic sign cate-
gories more accurately. In comparison to the baseline RetinaNet
with different scales, we gain 6.3%, 4.6% and 2.5% improvement
on small, medium and large scales, respectively. Some detection
examples by TSingNet are depicted in Fig. 11.
Fig. 10. Some examples detected by o
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4.6. Ablation studies

4.6.1. Effect of different components
In this section, we verify the impact of each component in

TSingNet on the final performance. The baseline is the original
RetinaNet with 1024 � 1024 input size and ResNet-50 backbone.
Table 6 shows the ablation results of incrementally adding the
components (i.e., AbFPN, SSA and ARFF) and the scale-aware loss
(SAL) training on the baseline RetinaNet framework. The standard
RetinaNet provides a detection AP of 65.3%. Integrating the SSA
improves the AP to 65.8%. The SSA helps to achieve foreground
semantics from complex background in the wild. Note that AbFPN
consists of both bottom-up and top-down subnets to circulate both
low-/mid-level and high-level semantic information within the
detection network. It brings AP improvements (1.6%, 1.3% and
1.0% increase) and AR improvements (0.1%, 1.1% and 0.6% increase)
on the small, medium and large traffic sign detection, respectively.
Then, for small traffic signs, it brings further improvements (0.6%
increase in AP and 1.2% in AR) by adding the ARFF. It shows the
impact of the ARFF on compensating for loss of context information
caused by occlusion or tiny signs in the standard backbone fea-
tures. Finally, integrating all components the SAL function can
achieve the best performance, especially for small traffic signs. Fur-
thermore, in terms of inference speed, the TSingNet can achieve
the best performance with tiny additional computational cost
(0.5 FPS), which means that the proposed method can achieve an
excellent balance between accuracy and efficiency.

4.6.2. Effect of AbFPN on multi-scale traffic signs
Furthermore, in order to thoroughly evaluate the capacity of

AbFPN backbone for multi-scale learning, we compare the
Precision-Recall (PR) curve provided by the baseline RetinaNet
combined with AbFPN and the two PR curves provided by two
baselines RetinaNet and Faster R-CNN combined with FPN, on
ur TSingNet on the STSD dataset.



Table 5
Comparison of our TSingNet with state-of-the-art methods on the DFG dataset under COCO metrics. The best results are in bold.

Methods AP AP50 AP75 APS APM APL

Cascade R-CNN [42] 81.1 86.9 86.1 40.5 64.5 87.2
RetinaNet [14] 78.6 85.9 84.4 34.2 61.6 84.8
Libra R-CNN [44] 73.4 82.9 81.4 41.8 54.0 81.0
ATSS [46] 75.1 82.0 81.0 42.9 53.4 82.7
YOLOv5 [45] 69.1 79.2 78.6 44.8 57.7 75.1
Our TSingNet 81.4 87.8 86.7 40.5 66.2 87.3

Fig. 11. Some detection examples detected by our TSingNet on the DFG dataset.

Table 6
Ablation study of the proposed TSingNet. Impact of integrating our different components (SSA, AbFPN, and ARFF) and the scale-aware loss (SAL) into the baseline RetinaNet on the
TT100K dataset. The best results are in bold. The best results only brings tiny extra computational cost.

Methods SSA AbFPN ARFF AP AP50 APS APM APL ARS ARM ARL FPS

Baseline 65.3 91.3 46.8 71.7 78.7 54.1 76.5 81.5 21.1
+ SSA

p
65.8 91.6 46.8 72.4 79.7 53.2 76.8 82.4 –

+ AbFPN
p p

66.3 91.8 48.4 73.0 79.7 54.2 77.6 82.1 –
+ ARFF

p p p
67.3 91.9 49.0 74.0 79.8 55.4 78.3 82.5 20.6

+ SAL
p p p

67.3 93.3 50.3 73.4 80.0 56.3 77.8 82.8 20.6

Fig. 12. Precision-recall comparison of the two baselines (RetinaNet, Faster R-CNN) with the FPN backbone and the baseline RetinaNet with our AbFPN on the TT100K dataset.
The comparison is shown for small, medium, and large sized signs with IoU = 0.75. Our method substantially improves the multi-scale detection performance over the
baseline framework.
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the TT100K dataset as Fig. 12. Under the evaluation metrics
IoU = 0.75, overall PR curve (i.e., red curve) of our proposed AbFPN
on the small traffic signs outperforms the FPN backbone by a large
margin, which demonstrates the effectiveness of the proposed
AbFPN on detecting multi-scale objects, especial small objects. Fur-
thermore, when the recall rate is 0.6, we obtain a precision of about
0.57 on small target detection, which is much higher than the Reti-
naNet and Faster R-CNN with FPN. The improvement means that
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the proposed AbFPN can further detect small traffic signs from
the complex backgrounds, i.e, we can recall more multi-scale signs.
This clearly shows that our AbFPN backbone outperforms the FPN
backbone in small, medium and large scales. This also indicates the
ability of our AbFPN to narrow semantic gaps betweenmulti-scales
by designing bilateral FPN and to achieve scale-aware foreground
features from complex backgrounds in a self-attention supervision
way.



Table 8
The comparison of the baseline with the scale-aware loss (SAL) vs. without the SAL. The best results are in bold.

Methods AP AP50 AP75 APS APM APL AR1 AR10 AR100 ARS ARM ARL

RetinaNet 65.3 91.3 78.8 46.8 71.1 78.7 67.6 70.6 70.6 54.1 76.5 81.5
RetinaNet + SAL 66.0 92.5 80.5 48.6 72.1 80.2 68.2 71.2 71.2 54.7 76.8 82.8

Fig. 13. Visualization of feature maps: (a) original images; (b) heat maps of the high-level in RetinaNet; (c) heat maps of the P4 layer in our TSingNet.

Fig. 14. Visualization results for traffic sign detection and recognition in the wild: (a) the traffic signs are diverse in terms of scale variation including large, medium and small
signs; (b) the traffic signs are occluded by trees, building, telephone poles, etc.

Table 7
The comparison of the baseline with ARFF vs. without ARFF. The ARFF achieves impressive performance on the TT100K dataset under COCO metrics. The best results are in bold.

Methods AP AP50 AP75 APS APM APL AR1 AR10 AR100 ARS ARM ARL

RetinaNet 65.3 91.3 78.8 46.8 71.1 78.7 67.6 70.6 70.6 54.1 76.5 81.5
RetinaNet + ARFF 65.7 92.3 79.5 48.0 72.3 79.1 67.8 70.9 70.9 54.4 76.8 82.0
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4.6.3. Effect of ARFF on multi-scale traffic signs
Table 7 gives the results of the baseline RetinaNet with ARFF

and without ARFF. Based on the experiment, the ARFF improves
over the baseline in AP from 65.3% to 65.7%, especially for small
and medium traffic signs (both with 1.2% increase). This indicates
that the ARFF block could exploit more informative context of
small and occluded traffic signs, benefiting from different receptive
fields.
4.6.4. Effect of scale-aware loss on multi-scale traffic signs
Table 8 gives the results of the baseline RetinaNet with the

scale-aware loss and without the scale-aware loss. As observed
from the results, the scale-aware loss achieves impressive perfor-
mance on the TT100K dataset under COCO metrics. Thanks to
learning scale-invariant foreground features, the scale-aware loss
improves over the baseline in terms of AP from 65.3% to 66.0%,
and achieves 1.8%, 1.0% and 1.5% increases in small, medium and
large traffic sign detection, respectively. This indicates that the
scale-aware loss function can help the network to narrow multi-
scale semantic gaps and learn valid foreground features under dif-
ferent scales.
4.6.5. Visualization of feature maps and results
To directly verify that AbFPN and ARFF does facilitate the fea-

ture learning and enhances the scale-aware and context-rich fea-
ture representation, we visualize the feature maps from the same
levels of TSingNet and RetinaNet in Fig. 13. We can notice that
the feature maps of our TSingNet (red boxes in the images) are
clearer foreground features and with less noise than that of Retina-
Net. In TSingNet, the AbFPN and ARFF make the features maps
cover more detailed and contexture information. Moreover,
Fig. 14 visualizes some detection results for traffic signs in the wild
scenes such as scale variation and occlusion. It shows that our
TSingNet excellently detects and recognizes traffic signs in the
challenging environments.
5. Conclusion

The proposed TSingNet leverages scale-aware and context-rich
feature learning for real-world ATDR in the wild. TSingNet com-
prises an AbFPN to learn scale-aware features and ARFF blocks to
adaptively exploit more informative context of occluded signs at
multiple scales. Experimental results showed the superiority of
TSingNet compared with state-of-the-art methods when applied
to three challenging traffic sign dataset (TT100K, STSD and DFG).
In the future, we plan to explore a more lightweight and faster
TSingNet model for the more challenging detection of traffic signs
from videos.
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